package ExtUtils::MM_Any; use strict; use vars qw($VERSION @ISA); $VERSION = 0.07; @ISA = qw(File::Spec); use Config; use File::Spec; =head1 NAME ExtUtils::MM_Any - Platform-agnostic MM methods =head1 SYNOPSIS FOR INTERNAL USE ONLY! package ExtUtils::MM_SomeOS; # Temporarily, you have to subclass both. Put MM_Any first. require ExtUtils::MM_Any; require ExtUtils::MM_Unix; @ISA = qw(ExtUtils::MM_Any ExtUtils::Unix); =head1 DESCRIPTION B ExtUtils::MM_Any is a superclass for the ExtUtils::MM_* set of modules. It contains methods which are either inherently cross-platform or are written in a cross-platform manner. Subclass off of ExtUtils::MM_Any I ExtUtils::MM_Unix. This is a temporary solution. B =head1 Inherently Cross-Platform Methods These are methods which are by their nature cross-platform and should always be cross-platform. =over 4 =item installvars my @installvars = $mm->installvars; A list of all the INSTALL* variables without the INSTALL prefix. Useful for iteration or building related variable sets. =cut sub installvars { return qw(PRIVLIB SITELIB VENDORLIB ARCHLIB SITEARCH VENDORARCH BIN SITEBIN VENDORBIN SCRIPT MAN1DIR SITEMAN1DIR VENDORMAN1DIR MAN3DIR SITEMAN3DIR VENDORMAN3DIR ); } =item os_flavor_is $mm->os_flavor_is($this_flavor); $mm->os_flavor_is(@one_of_these_flavors); Checks to see if the current operating system is one of the given flavors. This is useful for code like: if( $mm->os_flavor_is('Unix') ) { $out = `foo 2>&1`; } else { $out = `foo`; } =cut sub os_flavor_is { my $self = shift; my %flavors = map { ($_ => 1) } $self->os_flavor; return (grep { $flavors{$_} } @_) ? 1 : 0; } =back =head2 File::Spec wrappers ExtUtils::MM_Any is a subclass of File::Spec. The methods noted here override File::Spec. =over 4 =item catfile File::Spec <= 0.83 has a bug where the file part of catfile is not canonicalized. This override fixes that bug. =cut sub catfile { my $self = shift; return $self->canonpath($self->SUPER::catfile(@_)); } =back =head1 Thought To Be Cross-Platform Methods These are methods which are thought to be cross-platform by virtue of having been written in a way to avoid incompatibilities. They may require partial overrides. =over 4 =item B my @cmds = $MM->split_command($cmd, @args); Most OS have a maximum command length they can execute at once. Large modules can easily generate commands well past that limit. Its necessary to split long commands up into a series of shorter commands. split_command() will return a series of @cmds each processing part of the args. Collectively they will process all the arguments. Each individual line in @cmds will not be longer than the $self->max_exec_len being careful to take into account macro expansion. $cmd should include any switches and repeated initial arguments. If no @args are given, no @cmds will be returned. Pairs of arguments will always be preserved in a single command, this is a heuristic for things like pm_to_blib and pod2man which work on pairs of arguments. This makes things like this safe: $self->split_command($cmd, %pod2man); =cut sub split_command { my($self, $cmd, @args) = @_; my @cmds = (); return(@cmds) unless @args; # If the command was given as a here-doc, there's probably a trailing # newline. chomp $cmd; # set aside 20% for macro expansion. my $len_left = int($self->max_exec_len * 0.80); $len_left -= length $self->_expand_macros($cmd); do { my $arg_str = ''; my @next_args; while( @next_args = splice(@args, 0, 2) ) { # Two at a time to preserve pairs. my $next_arg_str = "\t ". join ' ', @next_args, "\n"; if( !length $arg_str ) { $arg_str .= $next_arg_str } elsif( length($arg_str) + length($next_arg_str) > $len_left ) { unshift @args, @next_args; last; } else { $arg_str .= $next_arg_str; } } chop $arg_str; push @cmds, $self->escape_newlines("$cmd\n$arg_str"); } while @args; return @cmds; } sub _expand_macros { my($self, $cmd) = @_; $cmd =~ s{\$\((\w+)\)}{ defined $self->{$1} ? $self->{$1} : "\$($1)" }e; return $cmd; } =item B my @commands = $MM->echo($text); my @commands = $MM->echo($text, $file); my @commands = $MM->echo($text, $file, $appending); Generates a set of @commands which print the $text to a $file. If $file is not given, output goes to STDOUT. If $appending is true the $file will be appended to rather than overwritten. =cut sub echo { my($self, $text, $file, $appending) = @_; $appending ||= 0; my @cmds = map { '$(NOECHO) $(ECHO) '.$self->quote_literal($_) } split /\n/, $text; if( $file ) { my $redirect = $appending ? '>>' : '>'; $cmds[0] .= " $redirect $file"; $_ .= " >> $file" foreach @cmds[1..$#cmds]; } return @cmds; } =item init_VERSION $mm->init_VERSION Initialize macros representing versions of MakeMaker and other tools MAKEMAKER: path to the MakeMaker module. MM_VERSION: ExtUtils::MakeMaker Version MM_REVISION: ExtUtils::MakeMaker version control revision (for backwards compat) VERSION: version of your module VERSION_MACRO: which macro represents the version (usually 'VERSION') VERSION_SYM: like version but safe for use as an RCS revision number DEFINE_VERSION: -D line to set the module version when compiling XS_VERSION: version in your .xs file. Defaults to $(VERSION) XS_VERSION_MACRO: which macro represents the XS version. XS_DEFINE_VERSION: -D line to set the xs version when compiling. Called by init_main. =cut sub init_VERSION { my($self) = shift; $self->{MAKEMAKER} = $ExtUtils::MakeMaker::Filename; $self->{MM_VERSION} = $ExtUtils::MakeMaker::VERSION; $self->{MM_REVISION}= $ExtUtils::MakeMaker::Revision; $self->{VERSION_FROM} ||= ''; if ($self->{VERSION_FROM}){ $self->{VERSION} = $self->parse_version($self->{VERSION_FROM}); if( $self->{VERSION} eq 'undef' ) { require Carp; Carp::carp("WARNING: Setting VERSION via file ". "'$self->{VERSION_FROM}' failed\n"); } } # strip blanks if (defined $self->{VERSION}) { $self->{VERSION} =~ s/^\s+//; $self->{VERSION} =~ s/\s+$//; } else { $self->{VERSION} = ''; } $self->{VERSION_MACRO} = 'VERSION'; ($self->{VERSION_SYM} = $self->{VERSION}) =~ s/\W/_/g; $self->{DEFINE_VERSION} = '-D$(VERSION_MACRO)=\"$(VERSION)\"'; # Graham Barr and Paul Marquess had some ideas how to ensure # version compatibility between the *.pm file and the # corresponding *.xs file. The bottomline was, that we need an # XS_VERSION macro that defaults to VERSION: $self->{XS_VERSION} ||= $self->{VERSION}; $self->{XS_VERSION_MACRO} = 'XS_VERSION'; $self->{XS_DEFINE_VERSION} = '-D$(XS_VERSION_MACRO)=\"$(XS_VERSION)\"'; } =item wraplist Takes an array of items and turns them into a well-formatted list of arguments. In most cases this is simply something like: FOO \ BAR \ BAZ =cut sub wraplist { my $self = shift; return join " \\\n\t", @_; } =item manifypods Defines targets and routines to translate the pods into manpages and put them into the INST_* directories. =cut sub manifypods { my $self = shift; my $POD2MAN_macro = $self->POD2MAN_macro(); my $manifypods_target = $self->manifypods_target(); return <manifypods_target; Generates the manifypods target. This target generates man pages from all POD files in MAN1PODS and MAN3PODS. =cut sub manifypods_target { my($self) = shift; my $man1pods = ''; my $man3pods = ''; my $dependencies = ''; # populate manXpods & dependencies: foreach my $name (keys %{$self->{MAN1PODS}}, keys %{$self->{MAN3PODS}}) { $dependencies .= " \\\n\t$name"; } foreach my $name (keys %{$self->{MAN3PODS}}) { $dependencies .= " \\\n\t$name" } my $manify = <{"MAN${section}PODS"}; push @man_cmds, $self->split_command(<makemakerdflt_target Returns a make fragment with the makemakerdeflt_target specified. This target is the first target in the Makefile, is the default target and simply points off to 'all' just in case any make variant gets confused or something gets snuck in before the real 'all' target. =cut sub makemakerdflt_target { return <<'MAKE_FRAG'; makemakerdflt: all $(NOECHO) $(NOOP) MAKE_FRAG } =item special_targets my $make_frag = $mm->special_targets Returns a make fragment containing any targets which have special meaning to make. For example, .SUFFIXES and .PHONY. =cut sub special_targets { my $make_frag = <<'MAKE_FRAG'; .SUFFIXES: .xs .c .C .cpp .i .s .cxx .cc $(OBJ_EXT) .PHONY: all config static dynamic test linkext manifest MAKE_FRAG $make_frag .= <<'MAKE_FRAG' if $ENV{CLEARCASE_ROOT}; .NO_CONFIG_REC: Makefile MAKE_FRAG return $make_frag; } =item POD2MAN_macro my $pod2man_macro = $self->POD2MAN_macro Returns a definition for the POD2MAN macro. This is a program which emulates the pod2man utility. You can add more switches to the command by simply appending them on the macro. Typical usage: $(POD2MAN) --section=3 --perm_rw=$(PERM_RW) podfile1 man_page1 ... =cut sub POD2MAN_macro { my $self = shift; # Need the trailing '--' so perl stops gobbling arguments and - happens # to be an alternative end of line seperator on VMS so we quote it return <<'END_OF_DEF'; POD2MAN_EXE = $(PERLRUN) "-MExtUtils::Command::MM" -e pod2man "--" POD2MAN = $(POD2MAN_EXE) END_OF_DEF } =item test_via_harness my $command = $mm->test_via_harness($perl, $tests); Returns a $command line which runs the given set of $tests with Test::Harness and the given $perl. Used on the t/*.t files. =cut sub test_via_harness { my($self, $perl, $tests) = @_; return qq{\t$perl "-MExtUtils::Command::MM" }. qq{"-e" "test_harness(\$(TEST_VERBOSE), '\$(INST_LIB)', '\$(INST_ARCHLIB)')" $tests\n}; } =item test_via_script my $command = $mm->test_via_script($perl, $script); Returns a $command line which just runs a single test without Test::Harness. No checks are done on the results, they're just printed. Used for test.pl, since they don't always follow Test::Harness formatting. =cut sub test_via_script { my($self, $perl, $script) = @_; return qq{\t$perl "-I\$(INST_LIB)" "-I\$(INST_ARCHLIB)" $script\n}; } =item libscan my $wanted = $self->libscan($path); Takes a path to a file or dir and returns an empty string if we don't want to include this file in the library. Otherwise it returns the the $path unchanged. Mainly used to exclude RCS, CVS, and SCCS directories from installation. =cut sub libscan { my($self,$path) = @_; my($dirs,$file) = ($self->splitpath($path))[1,2]; return '' if grep /^(?:RCS|CVS|SCCS|\.svn)$/, $self->splitdir($dirs), $file; return $path; } =item tool_autosplit Defines a simple perl call that runs autosplit. May be deprecated by pm_to_blib soon. =cut sub tool_autosplit { my($self, %attribs) = @_; my $maxlen = $attribs{MAXLEN} ? '$$AutoSplit::Maxlen=$attribs{MAXLEN};' : ''; my $asplit = $self->oneliner(sprintf <<'PERL_CODE', $maxlen); use AutoSplit; %s autosplit($$ARGV[0], $$ARGV[1], 0, 1, 1) PERL_CODE return sprintf <<'MAKE_FRAG', $asplit; # Usage: $(AUTOSPLITFILE) FileToSplit AutoDirToSplitInto AUTOSPLITFILE = %s MAKE_FRAG } =item all_target Generate the default target 'all'. =cut sub all_target { my $self = shift; return <<'MAKE_EXT'; all :: pure_all $(NOECHO) $(NOOP) MAKE_EXT } =item metafile_target my $target = $mm->metafile_target; Generate the metafile target. Writes the file META.yml, YAML encoded meta-data about the module. The format follows Module::Build's as closely as possible. Additionally, we include: version_from installdirs =cut sub metafile_target { my $self = shift; return <<'MAKE_FRAG' if $self->{NO_META}; metafile: $(NOECHO) $(NOOP) MAKE_FRAG my $prereq_pm = ''; foreach my $mod ( sort { lc $a cmp lc $b } keys %{$self->{PREREQ_PM}} ) { my $ver = $self->{PREREQ_PM}{$mod}; $prereq_pm .= sprintf " %-30s %s\n", "$mod:", $ver; } my $meta = <{DISTNAME} version: $self->{VERSION} version_from: $self->{VERSION_FROM} installdirs: $self->{INSTALLDIRS} requires: $prereq_pm distribution_type: module generated_by: ExtUtils::MakeMaker version $ExtUtils::MakeMaker::VERSION YAML my @write_meta = $self->echo($meta, 'META.yml'); return sprintf <<'MAKE_FRAG', join "\n\t", @write_meta; metafile : %s MAKE_FRAG } =item metafile_addtomanifest_target my $target = $mm->metafile_addtomanifest_target Adds the META.yml file to the MANIFEST. =cut sub metafile_addtomanifest_target { my $self = shift; return <<'MAKE_FRAG' if $self->{NO_META}; metafile_addtomanifest: $(NOECHO) $(NOOP) MAKE_FRAG my $add_meta = $self->oneliner(<<'CODE', ['-MExtUtils::Manifest=maniadd']); eval { maniadd({q{META.yml} => q{Module meta-data (added by MakeMaker)}}) } or print "Could not add META.yml to MANIFEST: $${'@'}\n" CODE return sprintf <<'MAKE_FRAG', $add_meta; metafile_addtomanifest: $(NOECHO) %s MAKE_FRAG } =back =head2 Abstract methods Methods which cannot be made cross-platform and each subclass will have to do their own implementation. =over 4 =item oneliner my $oneliner = $MM->oneliner($perl_code); my $oneliner = $MM->oneliner($perl_code, \@switches); This will generate a perl one-liner safe for the particular platform you're on based on the given $perl_code and @switches (a -e is assumed) suitable for using in a make target. It will use the proper shell quoting and escapes. $(PERLRUN) will be used as perl. Any newlines in $perl_code will be escaped. Leading and trailing newlines will be stripped. Makes this idiom much easier: my $code = $MM->oneliner(<<'CODE', [...switches...]); some code here another line here CODE Usage might be something like: # an echo emulation $oneliner = $MM->oneliner('print "Foo\n"'); $make = '$oneliner > somefile'; All dollar signs must be doubled in the $perl_code if you expect them to be interpreted normally, otherwise it will be considered a make macro. Also remember to quote make macros else it might be used as a bareword. For example: # Assign the value of the $(VERSION_FROM) make macro to $vf. $oneliner = $MM->oneliner('$$vf = "$(VERSION_FROM)"'); Its currently very simple and may be expanded sometime in the figure to include more flexible code and switches. =item B my $safe_text = $MM->quote_literal($text); This will quote $text so it is interpreted literally in the shell. For example, on Unix this would escape any single-quotes in $text and put single-quotes around the whole thing. =item B my $escaped_text = $MM->escape_newlines($text); Shell escapes newlines in $text. =item max_exec_len my $max_exec_len = $MM->max_exec_len; Calculates the maximum command size the OS can exec. Effectively, this is the max size of a shell command line. =for _private $self->{_MAX_EXEC_LEN} is set by this method, but only for testing purposes. =item B $MM->init_others(); Initializes the macro definitions used by tools_other() and places them in the $MM object. If there is no description, its the same as the parameter to WriteMakefile() documented in ExtUtils::MakeMaker. Defines at least these macros. Macro Description NOOP Do nothing NOECHO Tell make not to display the command itself MAKEFILE FIRST_MAKEFILE MAKEFILE_OLD MAKE_APERL_FILE File used by MAKE_APERL SHELL Program used to run shell commands ECHO Print text adding a newline on the end RM_F Remove a file RM_RF Remove a directory TOUCH Update a file's timestamp TEST_F Test for a file's existence CP Copy a file MV Move a file CHMOD Change permissions on a file UMASK_NULL Nullify umask DEV_NULL Supress all command output =item init_DIRFILESEP $MM->init_DIRFILESEP; my $dirfilesep = $MM->{DIRFILESEP}; Initializes the DIRFILESEP macro which is the seperator between the directory and filename in a filepath. ie. / on Unix, \ on Win32 and nothing on VMS. For example: # instead of $(INST_ARCHAUTODIR)/extralibs.ld $(INST_ARCHAUTODIR)$(DIRFILESEP)extralibs.ld Something of a hack but it prevents a lot of code duplication between MM_* variants. Do not use this as a seperator between directories. Some operating systems use different seperators between subdirectories as between directories and filenames (for example: VOLUME:[dir1.dir2]file on VMS). =item init_linker $mm->init_linker; Initialize macros which have to do with linking. PERL_ARCHIVE: path to libperl.a equivalent to be linked to dynamic extensions. PERL_ARCHIVE_AFTER: path to a library which should be put on the linker command line I the external libraries to be linked to dynamic extensions. This may be needed if the linker is one-pass, and Perl includes some overrides for C RTL functions, such as malloc(). EXPORT_LIST: name of a file that is passed to linker to define symbols to be exported. Some OSes do not need these in which case leave it blank. =item init_platform $mm->init_platform Initialize any macros which are for platform specific use only. A typical one is the version number of your OS specific mocule. (ie. MM_Unix_VERSION or MM_VMS_VERSION). =item platform_constants my $make_frag = $mm->platform_constants Returns a make fragment defining all the macros initialized in init_platform() rather than put them in constants(). =cut sub init_platform { return ''; } sub platform_constants { return ''; } =item os_flavor my @os_flavor = $mm->os_flavor; @os_flavor is the style of operating system this is, usually corresponding to the MM_*.pm file we're using. The first element of @os_flavor is the major family (ie. Unix, Windows, VMS, OS/2, MacOS, etc...) and the rest are sub families. Some examples: Cygwin98 ('Unix', 'Cygwin', 'Cygwin9x') Windows NT ('Win32', 'WinNT') Win98 ('Win32', 'Win9x') Linux ('Unix', 'Linux') MacOS Classic ('MacOS', 'MacOS Classic') MacOS X ('Unix', 'Darwin', 'MacOS', 'MacOS X') OS/2 ('OS/2') This is used to write code for styles of operating system. See os_flavor_is() for use. =back =head1 AUTHOR Michael G Schwern and the denizens of makemaker@perl.org with code from ExtUtils::MM_Unix and ExtUtils::MM_Win32. =cut 1;